# **DAEKWANG SENSOR CO., LTD.**

THERMISTOR & SENSOR ASSEMBLY

No. 413, Daeryung Technotown 3rd Building,

115, Gasan digital 2-ro, Geumcheon-gu, Seoul, Korea 08505

T. +82-2-3281-8502

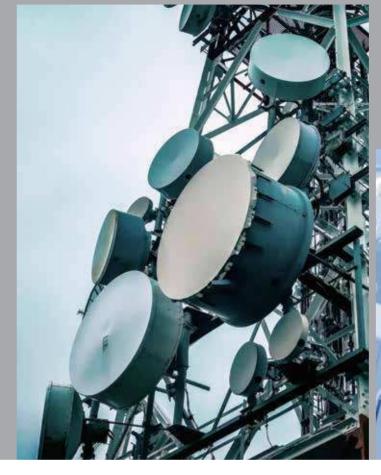
F. +82-2-3281-8505

www.daekwangsensor.com

www.dk-ss.com



# DAEKWANG SENSOR


THERMISTOR & SENSOR ASSEMBLY



# THERMISTOR SENSOR Markets AND Applications







#### **MEDICAL ELECTRONICS**

- Blood analysis equipment
- Blood dialvsis equipment
- Blood oxygenator equipment
- Clinical fever thermometers
- Esophageal tub
- Infant incub
- Internal body temperature monitor
- Internal temperature sensors
- Intravenous injection temperature regulators
- Skin temperature monito
- Thermodilution catheter probes



#### **CONSUMER ELECTRONICS**

- Air conditioners
- Clothes dryers
- Dishwashers
- Electric water heaters
- Fire detectors
- Home weather stations
- Oven temperature control
- Rechargeable battery packs
- Refrigerator and freezer temperature control
- Small appliance controls
- Solar collector controls
- Toasters
- Washing machines
- Hot water boilers
- Fan heater
- Bidet

#### **FOOD HANDING And PROCESSING**

- Coffee makers
- Deep fryers
- Fast food processing
- Perishable shipping
- Temperature controlled food storage systems





#### COMMUNICATION

- Rectifier
- SMPS
- BMS

#### **AUTOMOTIVE**

- Automatic climate control
- Coolant sensors
- Electric coolant fan temperature sensors
- Emission controls
- Engine block temperature sensors
- Engine oil temperature sensors
- Intake air temperature sensors
- Oil level sensors
- Outside air temperature sensor
- Transmission oil temperature sensors
- Water level sensors
- Inverter
- Converter
- BMS

# We serve customers with the best quality with confidence and passion

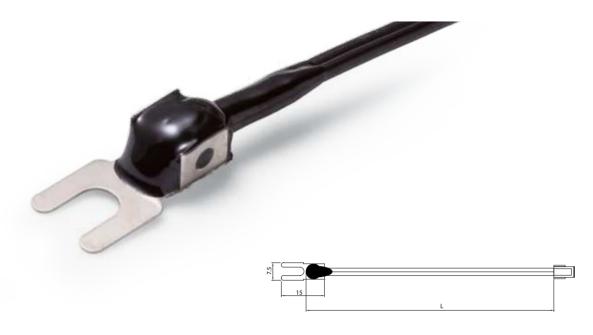
**DAE KWANG Sensor** has extensive experience in designing Thermistor Sensor Assemblies to suit the specific needs of users for a wide range of applications.

Has supplied quality products such as temperature sensors to a variety of industries such as automotives, home appliances, medical devices and telecommunications, since foundation in 1992.

We will continue to strive to realize customer satisfaction and quality management goals, and promote technical development to remain competitive and supply the best products to contribute to the corporate competitiveness and development of customer companies.

# **MOLDING TYPE FEATURES** - Operating Temperature : -40 ~ 105 °C - Withstand Volatage: 1800 VAC for 1 sec - Insulation resistance : Min 100 $\mbox{M}\Omega$ at 500 VDC (Normal temperature) **RING TERMINAL TYPE FEATURES** - Operating Temperature : -40 ~ 105 °C - Withstand Volatage: 1800 VAC for 1 sec - Insulation resistance : Min 100 $\mbox{M}\Omega$ at 500 VDC (Normal temperature) **CASE TYPE FEATURES** - Operating Temperature : -40 ~105 °C - Withstand Volatage: 1800 VAC for 1 sec

- Insulation resistance : Min 100 M $\Omega$  at 500 VDC (Normal temperature)




**TEMPERATURE SENSOR** 

# TS0001




# TS0005



# **TS0002**

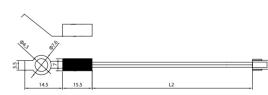











# **TS**0003

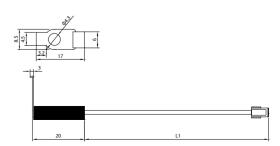




**TS0007** 






# **TS0004**

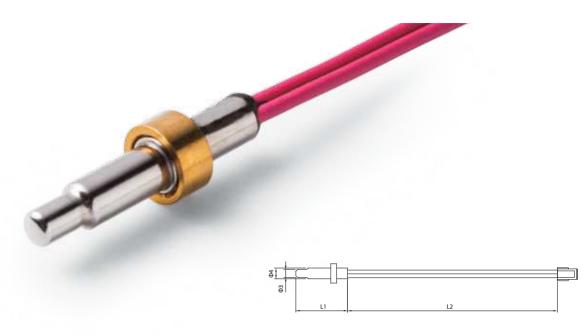




# **TS0008**

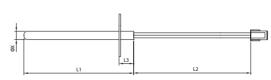




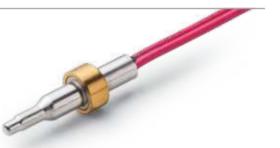

# **TS0009 TS0013 TS**0010 **TS0014 TS**0011 **TS**0015 **TS0012 TS**0016

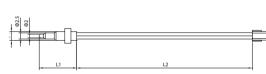
#### **TEMPERATURE SENSOR**

# **TS0017**



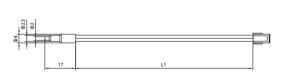

TS0021





**TS**0018






**TS0022** 

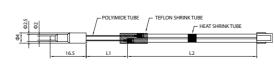




**TS**0019

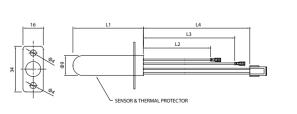





**TS**0023

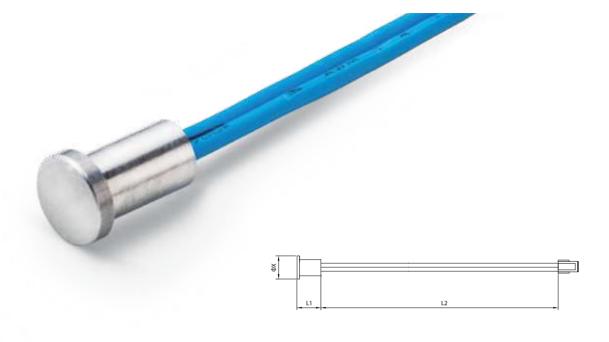




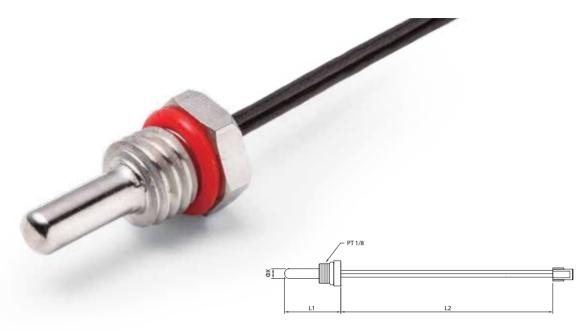

**TS0020** 



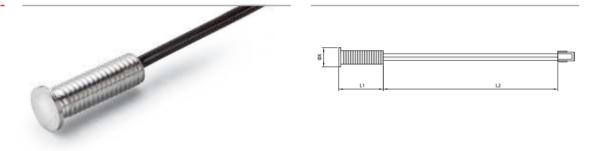



**TS0024** 






**TEMPERATURE SENSOR** 

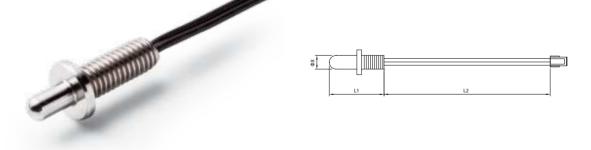

# **TS0025**



**TS0029** 

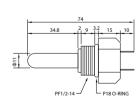


**TS0026** 



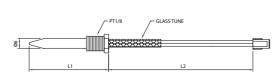

**TS0030** 





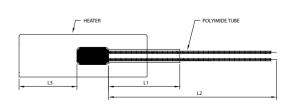

**TS0027** 



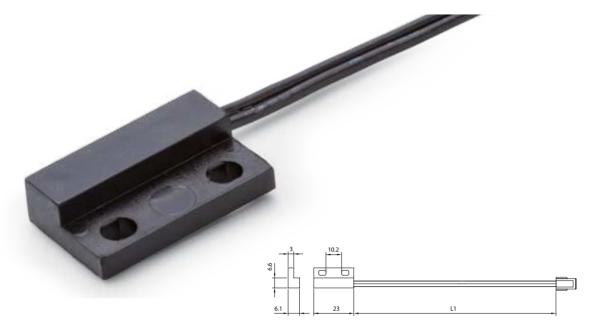

**TS**0031





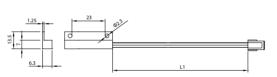

**TS0028** 






**TS0032** 






# **RS0001**



# **RS0002**





# **RS0003**





## **RS0004**





### THERMISTOR GLOSSARY

#### **Dissipation Constant** (δ)

The Dissipation constant is the ratio, normally expressed in milliwatts per degree C(mW / °C), at a specified ambient temperature, of a change in power dissipation in a thermistor to the resultant body temperature change.

#### Material Constant (ß)

The material constant of a thermistor is a measure of its resistance at one temperature compared to its resistance at a different temperature. Its value may be calculated by the formula shown below and is expressed in degree kelvin (°K)

$$\beta = \frac{\log_{10} \ \frac{(R_0 \, T_1)}{(R_0 \, T_2)}}{(\frac{1}{T_1} \, - \, \frac{1}{T_2}) \log_{e}}$$

- R0T1 is the zero-power resistance at absolute temperature T1.
- R0T2 is the zero-power resistance at absolute temperature T2.
- e is the naperianbase 2.71828.
- T1 is temperature 1, experssed in degree kelvin.
- T2 is temperature 2, experssed in degree kelvin.

#### **Maximum Operating Temperature**

The maximum operating temperature is the maximum body temperature at which the thermistor will operate for an extended period of time with acceptable stability of its characteristics. This temperature can be the result of internal or external heating, or both, and should not exceed the maximum value specified.

#### Maximum Steady-state Current (Imax)

The maximum steady-state current is the rating of the maximum current, normally expressed in ampere(A), allowable to be conducted by an inrush limiting thermistor for extended period of time.

#### **Negative Temperature Coefficient (NTC)**

A NTC thermistor is one whose zero-power resistance decreases with an increase in temperature.

#### Resistance Ratio (RT1/RT2)

The resistance ratio of measured resistance at any two reference temperature points. There is no industry standard ratio, although three particular temperature ranges are most common.

| R 0°C  | R 25°C | R 25°C  |  |  |
|--------|--------|---------|--|--|
| R 50°C | R 85°C | R 125°C |  |  |

The Dae Kwang standard resistance ratio is R@25°C / R@85°C.

#### **Resistance - Temperature Characteristic**

The resistance-temperature characteristic is the relationship between the zero-power resistance of a thermistor and its body temperature.

#### **Stability**

The stability of a thermistor is the ability of it to retain specified characteristics after being subjected to designated environmental or electrical test conditions.

#### **Standard Reference Temperature**

The standard reference temperature is the thermistor body temperature at which nominal zero-power resistance is specified and is usually  $25^{\circ}\text{C}$ 

#### Thermal Time Constant (T)

The thermal time constant is the time required for a thermistor to change 63.2percent of the total difference between its initial and final body temperature when subjected to a step function change in temperature under zero-power conditions and is normally expressed in seconds.

#### **Thermistor**

A thermistor is a thermally sensitive resistor whose primary function is to exhibit a change in electrical resistance with a change in body temperature.

#### Zero-Power Resistance @ 25°C (Ro)

The zero -power resistance is the DC resistance value of a thermistor measured at a specified temperature with power dissipated by the thermistor low enough that any further decrease in power will result in not more than 0.1% change in resistanse.

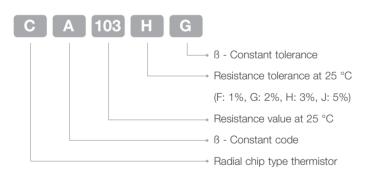
# Zero-Power Temperature Coefficient of Resistance (aT)

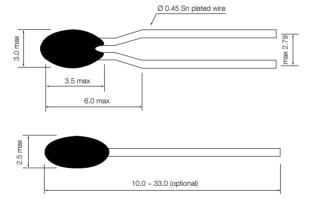
Zero-power coefficient of resistance is the radio at the specified temperature (T) of the rate of change of zeropower resistance with temperature to the zero-power resistance of the thermistor. The temperature coefficient is commonly expressed in percent per degree C (% / °C).

$$\mathbf{Q}_{\mathrm{T}} = \frac{1}{\mathrm{RT}} - \frac{\mathrm{(D\,RT)}}{\mathrm{(D\,T)}}$$

## **RADIAL TYPE THERMISTOR**

The precision interchangeable themistors are small high quality, low cost, epoxy encapsulated, precision curve matched devices which are available in a variety of electical parameters.


These thermistors provide highly accurate and stable temperature sensing capability for applications such as temperature measurement or compensation.


Dissipation constant: 3 mW / °C
Thermal time constant: Max. 12 sec
Maximum power rating: 30 mW (at 25 °C)
Operating temperature: -30 °C ~ +120 °C

#### Options

- Special encapsulants or probe housings
- Tape and reel packing
- Non-standard resistance value and tolerances

#### **Part Number Designation**





#### **Specifications**

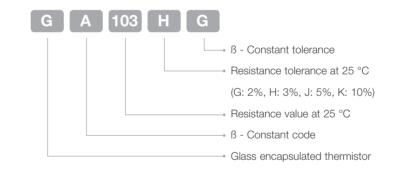
| Part No.  | Resistance<br>at 25°C(Ω) | β-Constant<br>25°C / 85°C(°K) |
|-----------|--------------------------|-------------------------------|
| CL202JG   | 2,000                    | 3520                          |
| CA502JG   | 5,000                    | 3970                          |
| CB502JG   | 5,000                    | 3330                          |
| CK103JG   | 10,000                   | 3435                          |
| CA103JG   | 10,000                   | 3970                          |
| CF103JG   | 10,000                   | 4145                          |
| CE10,74JG | 10,740                   | 3520                          |
| CA153JG   | 15,000                   | 3970                          |
| CH203JG   | 20,000                   | 4200                          |
| CH303JG   | 30,000                   | 4200                          |
| CG503JG   | 50,000                   | 4040                          |
| CI104JG   | 100,000                  | 4390                          |

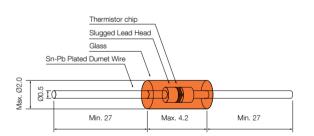
<sup>\*</sup> Other resistance tolerance and specifications are available.

## **DIODE TYPE THERMISTOR**

The glass encapsulated thermistors are small, hermetically sealed, glass encapsulated(DO-35 package) devices.

Their high sensitivity makes them especially useful in applications such as temperature measurement, temperature control, liquid level indication, flow measurement and temperature compensation.


These low cost devices exhibit excellent long term stability and repeatability.


Dissipation constant: 2.4mW / °C
Thermal time constant: Max. 15 sec
Maximum power rating: 25mW (at 25 °C)
Operating temperature range: -30 °C ~ +250 °C

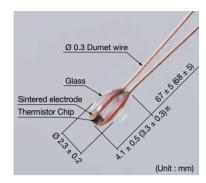
#### **Options**

- Special encapsulants or probe housings
- Tape and reel packing
- Non-standard resistance value and tolerances

#### **Part Number Designation**



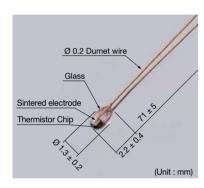



#### **Specifications**

| Part No. | Resistance<br>at 25°C(Ω) | ß-Constant<br>25°C / 85°C(°K) |
|----------|--------------------------|-------------------------------|
| GE542J   | 5,369                    | 3520                          |
| GU103J   | 10,000                   | 3720                          |
| GA103J   | 10,000                   | 3970                          |
| GT203J   | 20,000                   | 4080                          |
| GT303J   | 30,000                   | 4080                          |
| GT473J   | 47,000                   | 4080                          |
| GT503J   | 50,000                   | 4080                          |
| GS104J   | 100,000                  | 4100                          |
|          |                          |                               |

 $<sup>^{\</sup>star}$  Other resistance tolerance and specifications are available.

# **CHIP IN GLASS TYPE THERMISTOR**


#### **S1 Type Thermistor**



#### **Standard Specifications**

| Item                                              | Gold electrode type            | Silver palladium electrode type |  |  |  |
|---------------------------------------------------|--------------------------------|---------------------------------|--|--|--|
| Insulation resistance<br>(Between lead and glass) | Min. 50 M $\Omega$ (500V d.c.) | Min. 50 M $\Omega$ (500V d.c.)  |  |  |  |
| Thermal time constant (in still air)              | 12 sec. (10 sec. ~ 17 sec.)    | 12 sec. (10 sec. ~ 17 sec.)     |  |  |  |
| Dissipation constant (in still air)               | 1.1 ~ 1.3 mW/°C                | 1.1 ~ 1.6 mW/°C                 |  |  |  |
| Operating temperature range                       | -50 °C ~ +300 °C               | -50 °C ~ +120 °C                |  |  |  |

#### S3 Type Thermistor



#### **Standard Specifications**

| Item                                              | Gold electrode type           | Silver palladium electrode type |  |  |  |
|---------------------------------------------------|-------------------------------|---------------------------------|--|--|--|
| Insulation resistance<br>(Between lead and glass) | Min. 10 M $\Omega$ (50V d.c.) | Min. 10 M $\Omega$ (50V d.c.)   |  |  |  |
| Thermal time constant (in still air)              | 5 sec. (3.5 sec. ~ 6.5 sec.)  | 5 sec. (3.5 sec. ~ 6.5 sec.)    |  |  |  |
| Dissipation constant (in still air)               | 0.7 ~ 0.9 mW/°C               | 0.7 ~ 0.9 mW/°C                 |  |  |  |
| Operating temperature range                       | -50 °C ~ +300 °C              | -50 °C ~ +120 °C                |  |  |  |

| Nominal zero-power resistance            | b-value                    | Nominal zero-power resistance              | b-value                        |  |
|------------------------------------------|----------------------------|--------------------------------------------|--------------------------------|--|
| $R 0 = 6 K\Omega \pm 1.0 \%$             |                            | R $200 = 0.55 \text{ K}\Omega \pm 1.0 \%$  |                                |  |
| R 0 = 6 KΩ ± 2.5 %                       |                            | R 200 = 0.55 KΩ ± 2.5 %                    |                                |  |
| R 0 = 6 KΩ ± 5.0 %                       | D.O. / 100                 | R 200 = 0.55 KΩ ± 5.0 %                    | D 400 / 000 4000 K + 0 0 0/    |  |
| R 25 = 2.186 KΩ ± 1.0 %                  | B 0 / 100 = 3390 K ± 2.0 % | R 100 = 6.282 KΩ ± 1.0 %                   | B 100 / 200 = 4300 K ± 3.0 %   |  |
| R 25 = 2.186 KΩ ± 2.5 %                  |                            | R 100 = 6.282 KΩ ± 2.5 %                   |                                |  |
| R 25 = 2.186 KΩ ± 5.0 %                  |                            | R 100 = $6.282 \text{ K}\Omega \pm 5.0 \%$ |                                |  |
| R 0 = 30 KΩ ± 1.0 %                      |                            | R 200 = 1 KΩ ± 1.0 %                       |                                |  |
| $R 0 = 30 \text{ K}\Omega \pm 2.5 \%$    |                            | R 200 = 1 K $\Omega$ ± 2.5 %               |                                |  |
| $R 0 = 30 \text{ K}\Omega \pm 5.0 \%$    | D.O. / 100 O.150 IV O.00 V | R 200 = 1 K $\Omega$ ± 5.0 %               | D 400 / 000 4507 K 0 0 0       |  |
| R 25 = 10.74 KΩ ± 1.0 %                  | B 0 / 100 = 3450 K ± 2.0 % | R 100 = 13.06 KΩ $\pm$ 1.0 %               | B 100 / 200 = 4537 K ± 3.0 %   |  |
| R 25 = 10.74 KΩ ± 2.5 %                  |                            | R 100 = 13.06 K $\Omega$ ± 2.5 %           |                                |  |
| R 25 = 10.74 KΩ ± 5.0 %                  |                            | R 100 = 13.06 KΩ ± 5.0 %                   |                                |  |
| R 100 = 3.3 KΩ ± 1.0 %                   |                            | Nominal zero-power resistance              | b-value                        |  |
| R 100 = 3.3 KΩ ± 2.5 %                   |                            | R 200 = 4 KΩ ± 1.0 %                       |                                |  |
| R $100 = 3.3 \text{ K}\Omega \pm 5.0 \%$ | D.O. / 100                 | R 200 = 4 K $\Omega$ ± 2.5 %               |                                |  |
| R 25 = 49.12 KΩ ± 1.0 %                  | B 0 / 100 = 3970 K ± 2.0 % | R 200 = 4 KΩ ± 5.0 %                       | D 450 / 050 - 504 4 K + 0.0 0/ |  |
| R 25 = 49.12 KΩ ± 2.5 %                  |                            | R 150 = 13.80 KΩ ± 1.0 %                   | B 150 / 250 = 5014 K ± 3.0 %   |  |
| R 25 = 49.12 KΩ ± 5.0 %                  |                            | R 150 = 13.80 KΩ ± 2.5 %                   |                                |  |
|                                          |                            | R 150 = 13.80 KΩ ± 5.0 %                   |                                |  |
|                                          |                            |                                            |                                |  |

# **RESISTANCE vs TEMPERATURE TABLE**

| Temp (°C) | A       | В       | D       | Е       | F       | G       | Н       | 1      | J       | K       | L       |
|-----------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|
| -40       | 34.8497 | 16.6173 | 33.1038 | 21.7299 | 37.8014 | 30.8654 | 40.3170 | 45.762 | 29.5720 | 19.3816 | 21.3567 |
| -35       | 24.9517 | 13.0639 | 23.8741 | 16.3291 | 26.9481 | 22.5678 | 28.6268 | 32.173 | 21.7030 | 14.7709 | 16.1368 |
| -30       | 18.0861 | 10.2682 | 17.4153 | 12.3909 | 19.4417 | 16.6477 | 20.5562 | 22.873 | 16.0740 | 11.3524 | 12.2910 |
| -25       | 13.2628 | 8.0847  | 12.8422 | 9.4897  | 14.1850 | 12.3887 | 14.9207 | 16.437 | 12.0100 | 8.7957  | 9.4365  |
| -20       | 9.8330  | 6.3866  | 9.5681  | 7.3316  | 10.4601 | 9.2993  | 10.9425 | 11.935 | 9.0514  | 6.8677  | 7.3018  |
| -15       | 7.3662  | 5.0681  | 7.1988  | 5.7116  | 7.7911  | 7.0397  | 8.1046  | 8.7522 | 6.8784  | 5.4022  | 5.6936  |
| -10       | 5.5726  | 4.0439  | 5.4670  | 4.4847  | 5.8584  | 5.3733  | 6.0598  | 6.4795 | 5.2693  | 4.2797  | 4.4730  |
| -5        | 4.2551  | 3.2467  | 4.1889  | 3.5479  | 4.4449  | 4.1345  | 4.5721  | 4.4100 | 4.0682  | 3.4137  | 3.5398  |
| 0         | 3.2778  | 2.6239  | 3.2369  | 2.8269  | 3.4012  | 3.2061  | 3.4798  | 3.6486 | 3.1646  | 2.7408  | 2.8212  |
| 5         | 2.5462  | 2.1350  | 2.5216  | 2.2679  | 2.6238  | 2.5049  | 2.6705  | 2.7732 | 2.4797  | 2.2143  | 2.2639  |
| 10        | 1.9936  | 1.7492  | 1.9796  | 1.8313  | 2.0396  | 1.9712  | 2.0659  | 2.1249 | 1.9567  | 1.7999  | 1.8287  |
| 15        | 1.5728  | 1.4426  | 1.5656  | 1.4880  | 1.5972  | 1.5619  | 1.6104  | 1.6408 | 1.5544  | 1.4715  | 1.4865  |
| 20        | 1.2498  | 1.1975  | 1.2470  | 1.2164  | 1.2596  | 1.2459  | 1.2646  | 1.2764 | 1.2429  | 1.2098  | 1.2157  |
| 25        | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000 | 1.0000  | 1.0000  | 1.0000  |
| 30        | 0.8054  | 0.8397  | 0.8072  | 0.8267  | 0.7990  | 0.8075  | 0.7961  | 0.7888 | 0.8094  | 0.8309  | 0.8271  |
| 35        | 0.6528  | 0.7087  | 0.6556  | 0.6870  | 0.6424  | 0.6557  | 0.6380  | 0.6263 | 0.6588  | 0.6938  | 0.6877  |
| 40        | 0.5323  | 0.6007  | 0.5357  | 0.5739  | 0.5195  | 0.5354  | 0.5144  | 0.5004 | 0.5392  | 0.5822  | 0.5747  |
| 45        | 0.4365  | 0.5112  | 0.4403  | 0.4817  | 0.4226  | 0.4394  | 0.4172  | 0.4023 | 0.4436  | 0.4907  | 0.4825  |
| 50        | 0.3600  | 0.4364  | 0.3639  | 0.4063  | 0.3457  | 0.3624  | 0.3404  | 0.3252 | 0.3668  | 0.4155  | 0.4070  |
| 55        | 0.2985  | 0.3737  | 0.3023  | 0.3442  | 0.2842  | 0.3002  | 0.2792  | 0.2644 | 0.3046  | 0.3534  | 0.3447  |
| 60        | 0.2488  | 0.3207  | 0.2525  | 0.2929  | 0.2349  | 0.2499  | 0.2303  | 0.2161 | 0.2541  | 0.3018  | 0.2932  |
| 65        | 0.2084  | 0.2759  | 0.2119  | 0.2503  | 0.1952  | 0.2089  | 0.1909  | 0.1776 | 0.2129  | 0.2587  | 0.2504  |
| 70        | 0.1754  | 0.2377  | 0.1787  | 0.2147  | 0.1629  | 0.1753  | 0.1590  | 0.1466 | 0.1790  | 0.2227  | 0.2147  |
| 75        | 0.1483  | 0.2052  | 0.1514  | 0.1849  | 0.1366  | 0.1478  | 0.1330  | 0.1216 | 0.1511  | 0.1924  | 0.1848  |
| 80        | 0.1260  | 0.1775  | 0.1289  | 0.1598  | 0.1151  | 0.1251  | 0.1118  | 0.1014 | 0.1279  | 0.1668  | 0.1596  |
| 85        | 0.1074  | 0.1539  | 0.1101  | 0.1386  | 0.0974  | 0.1063  | 0.0944  | 0.0848 | 0.1087  | 0.1452  | 0.1383  |
| 90        | 0.0920  | 0.1339  | 0.0945  | 0.1205  | 0.0828  | 0.0907  | 0.0801  | 0.0713 | 0.0926  | 0.1267  | 0.1204  |
| 95        | 0.0791  | 0.1169  | 0.0814  | 0.1052  | 0.0706  | 0.0777  | 0.0682  | 0.0602 | 0.0791  | 0.1110  | 0.1052  |
| 100       | 0.0683  | 0.1026  | 0.0704  | 0.0920  | 0.0605  | 0.0670  | 0.0583  | 0.0511 | 0.0677  | 0.0975  | 0.0922  |
| 105       | 0.0592  | 0.0906  | 0.0611  | 0.0807  | 0.0520  | 0.0579  | 0.0500  | 0.0435 | 0.0580  | 0.0859  | 0.0812  |
| 110       | 0.0514  | 0.0807  | 0.0532  | 0.0709  | 0.0449  | 0.0504  | 0.0430  | 0.0371 | 0.0499  | 0.0759  | 0.0718  |
| 115       | 0.0449  | 0.0726  | 0.0465  | 0.0624  | 0.0388  | 0.0441  | 0.0372  | 0.0319 | 0.0429  | 0.0672  | 0.0638  |
| 120       | 0.0392  | 0.0662  | 0.0407  | 0.0550  | 0.0337  | 0.0388  | 0.0322  | 0.0274 | 0.0370  | 0.0597  | 0.0570  |
| ß(25/85)  | 3970    | 3330    | 3925    | 3520    | 4145    | 3990    | 4200    | 4390   | 3950    | 3435    | 3520    |
| ß(25/50)  | 3930    | 3230    | 3890    | 3470    | 4100    | 3930    | 4155    | 4330   | 3865    | 3390    | 3465    |
| ß(0/50)   | 3885    | 3210    | 3835    | 3430    | 4055    | 3865    | 4100    | 4270   | 3805    | 3330    | 3418    |

 $<sup>^{\</sup>star}$  Please consult us for availability of special spec.